
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Planning in Artificial Intelligence
The intelligent way to do things

COURSE: CS60045

1

Pallab Dasgupta
Professor,
Dept. of Computer Sc & Engg

Initial states

Goal states

From State Spaces to Predicate Worlds

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

Predicate P

Predicate Q

Predicate R

Predicate S
We abstract out the state space in
terms of predicates of our interest.

Worlds are defined in terms of
truths of predicates.

Actions take us from on world to
another by transforming the truth
of one or more predicates.

Blocks World

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

A B
C

Initial State

A
B
C

Target State

Predicates describing
the initial state:
On(C, A), On(A, Table),
On(B, Table),
Clear(C), Clear(B)

Predicates describing
the target state:
On(A, B), On(B, C)

ACTIONS:

Move(X, Y)
Precond: Clear(X), Clear(Y)
Effect: On(X, Y)

Move(X, Table)
Precond: Clear(X)
Effect: On(X, Table)

The planning task is to determine the actions for
reaching the target state from the initial state.

Choosing Actions

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

A B
C

A
B
C

On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B)

On(A, B), On(B, C)

ACTIONS:

Move(X, Y)
Precond: Clear(X), Clear(Y)
Effect: On(X, Y)

• We can move C to the table
• This achieves none of the goal predicates

• We can move C to top of B
• This achieves none of the goal predicates

• We can move B to top of C
• This achieves On(B, C)

Move(X, Table)
Precond: Clear(X)
Effect: On(X, Table)

Partial Solutions

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

A B
C

A
B
C

On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B)

On(A, B), On(B, C)

ACTIONS:

Move(X, Y)
Precond: Clear(X), Clear(Y)
Effect: On(X, Y)

Move(X, Table)
Precond: Clear(X)
Effect: On(X, Table)

Move(B, C)

Clear(C), Clear(B)

We use Move(B, C) to achieve
the sub-goal, On(B, C).

But if we apply this move at the
beginning, we get:

A

B
C

Which is not what we want !!

Partial Solutions

6

A B
C

A
B
C

On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B)

On(A, B), On(B, C)

ACTIONS:

Move(X, Y)
Precond: Clear(X), Clear(Y)
Effect: On(X, Y)

Move(X, Table)
Precond: Clear(X)
Effect: On(X, Table)

Move(C, Table)

Clear(C)

Move(A, B)

Clear(A), Clear(B)

Clear(A), On(C, Table)

The sub-goal On(A, B) is achieved by
moving C to the table and then moving
A to top to B. But this gives us:

A
BC

But this too is not what we want !!

Ordering Partial Solutions

7

A B
C

A
B
C

On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B)

On(A, B), On(B, C)

ACTIONS:

Move(X, Y)
Precond: Clear(X), Clear(Y)
Effect: On(X, Y)

Move(X, Table)
Precond: Clear(X)
Effect: On(X, Table)

Move(C, Table)

Clear(C)

Move(A, B)

Clear(A), Clear(B)

Clear(A), On(C, Table)

Move(B, C) removes the Clear(C)
predicate which is essential for
Move(C, Table). Hence Move(C, Table)
must precede Move(B, C).

Move(B, C)

Clear(C), Clear(B)

¬ Clear(C)

Can Move(B, C) and Move(A, B) be
executed in any order?

Ordering Partial Solutions

8

A B
C

A
B
C

On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B)

On(A, B), On(B, C)

ACTIONS:

Move(X, Y)
Precond: Clear(X), Clear(Y)
Effect: On(X, Y)

Move(X, Table)
Precond: Clear(X)
Effect: On(X, Table)

Move(C, Table)

Clear(C)

Move(A, B)

Clear(A), Clear(B)

Clear(A), On(C, Table)

Move(A, B) removes the Clear(B)
predicate which is essential for
Move(B, C). Hence Move(B, C) must
precede Move(A, B).

Move(B, C)

Clear(C), Clear(B)

¬ Clear(C)

Therefore the only total order is:
1. Move(C, Table)
2. Move(B, C)
3. Move(A, B)

¬ Clear(B)

Sometimes Partial Order may stay

ACTIONS

Op(ACTION: RightShoe,
PRECOND::RightSockOn,
EFFECT:: RightShoeOn)

Op(ACTION: RightSock,
EFFECT: RightSockOn)

Op(ACTION: LeftShoe,
PRECOND: LeftSockOn,
EFFECT: LeftShoeOn)

Op(ACTION: LeftSock,
EFFECT: LeftSockOn)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

Which of these situations are allowed by these actions?

Sometimes Partial Order may stay

ACTIONS

Op(ACTION: RightShoe,
PRECOND::RightSockOn,
EFFECT:: RightShoeOn)

Op(ACTION: RightSock,
EFFECT: RightSockOn)

Op(ACTION: LeftShoe,
PRECOND: LeftSockOn,
EFFECT: LeftShoeOn)

Op(ACTION: LeftSock,
EFFECT: LeftSockOn)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Start

LeftSock

LeftShoe

End

LeftSockOn

LeftShoeOn, RightShoeOn

RightSock

RightShoe

RighSockOn

Planning is an integral part of automation

Recommended clip from Charlie Chaplin’s Modern Times to see what can go wrong:
https://www.youtube.com/watch?v=n_1apYo6-Ow

What we intend to learn:
1. Partial Order Planning
2. GraphPlan and SATPlan

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 11

https://www.youtube.com/watch?v=n_1apYo6-Ow

Partial Order Planning

• Basic Idea: Make choices only that are relevant to solving the current part of the problem

• Least Commitment Choices
• Orderings: Leave actions unordered, unless they must be sequential
• Bindings: Leave variables unbound, unless needed to unify with conditions being achieved
• Actions: Usually not subject to “least commitment”

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 12

Terminology

• Totally Ordered Plan
• There exists sufficient orderings O such that all actions in A are ordered with respect to each

other
• Fully Instantiated Plan

• There exists sufficient constraints in B such that all variables are constrained to be equal to
some constant

• Consistent Plan
• There are no contradictions in O or B

• Complete Plan
• Every precondition P of every action Ai in A is achieved:

• There exists an effect of an action Aj that comes before Ai and unifies with P, and no
action Ak that deletes P comes between Aj and Ai

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 13

Early Days: STRIPS

• STanford Research Institute Problem Solver
• Many planners today use specification languages that are variants of the one used in STRIPS

Our running example:
• Given:

 Initial state: The agent is at home without tea, biscuits, book
 Goal state: The agent is at home with tea, biscuits, book
 A set of actions as shown next

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 14

Representing States

• States are represented by conjunctions of function-free ground literals
At(Home) ∧ ¬Have(Tea) ∧
¬Have(Biscuits) ∧ ¬Have(Book)

• Goals are also described by conjunctions of literals
At(Home) ∧ Have(Tea) ∧

Have(Biscuits) ∧ Have(Book)

• Goals can also contain variables
At(x) ∧ Sells(x, Tea)

 The above goal is being at a shop that sells tea

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 15

Representing Actions

• Action description – serves as a name
• Precondition – a conjunction of positive literals (why positive?)
• Effect – a conjunction of literals (+ve or –ve)

• The original version had an add list and a delete list.

Op(ACTION: Go(there),
PRECOND: At(here) ∧ Path(here, there),
EFFECT: At(there) ∧ ¬At(here))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 16

Representing Plans

• A set of plan steps. Each step is one of the operators for the problem.

• A set of step ordering constraints. Each ordering constraint is of the form Si  Sj, indicating Si must
occur sometime before Sj.

• A set of variable binding constraints of the form v = x, where v is a variable in some step, and x is
either a constant or another variable.

• A set of causal links written as S →c: S’ indicating S satisfies the precondition c for S’.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 17

Example

• Initial plan
Plan(

STEPS: {
S1: Op(ACTION: start),
S2: Op(ACTION: finish,

PRECOND: RightShoeOn ∧ LeftShoeOn)
},

ORDERINGS: {S1  S2},
BINDINGS: { },
LINKS: { })

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 18

POP Example: Get Tea, Biscuits, Book

Initial state:

Op(ACTION: Start,
EFFECT: At(Home) ∧ Sells(BS, Book)

∧ Sells(TS, Tea)
∧ Sells(TS, Biscuits))

Goal state:

Op(ACTION: Finish,
PRECOND: At(Home) ∧ Have(Tea)

∧ Have(Biscuits)
∧ Have(Book))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 19

Actions:

Op(ACTION: Go(y),
PRECOND: At(x),
EFFECT: At(y) ∧ ¬At(x))

Op(ACTION: Buy(x),
PRECOND: At(y) ∧ Sells(y, x),
EFFECT: Have(x))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 20

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 21

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Op(ACTION: Buy(x),
PRECOND: At(y) ∧ Sells(y, x),
EFFECT: Have(x))

Buy(Tea) Buy(Biscuits)

At(y1) ∧ Sells(y1, Book) At(y2) ∧ Sells(y2, Tea) At(y3) ∧ Sells(y3, Biscuits)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 22

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Op(ACTION: Buy(x),
PRECOND: At(y) ∧ Sells(y, x),
EFFECT: Have(x))

Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

{ y1 \ BS } { y2 \ TS } { y3 \ TS }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 23

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Op(ACTION: Go(y),
PRECOND: At(x),
EFFECT: At(y) ∧ ¬At(x))

Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(y1)

At(y1)

Go(TS)
¬ At(y2)

At(y2)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 24

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(Home)

At(Home)

The problem here is that
Go(BS) and Go(TS)
destroy each other’s
precondition. Neither can
precede the other.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 25

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(y2)

At(y2)

Can y2 be instantiated with
something else?

Indeed !!
We can try BS for example.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 26

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(BS)

At(BS)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 27

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(BS)

At(BS)

The red link prevents me
from going to TS before
buying the book

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 28

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book)

At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(BS)

At(BS)

Go(Home)

At(z)

¬ At(z)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 29

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book)

At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(BS)

At(BS)

Go(Home)

At(TS)

¬ At(TS)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 30

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book)

At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(BS)

At(BS)

Go(Home)

At(TS)

¬ At(TS)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 31

FINISH

START

Buy(Book)

Buy(Tea) Buy(Biscuits)

Go(BS)

Go(TS)

Go(Home)

The Partial Order Planning Algorithm

Function POP(initial, goal, operators)
// Returns plan

plan ← Make-Minimal-Plan(initial, goal)
Loop do

If Solution(plan) then return plan
S, c ← Select-Subgoal(plan)
Choose-Operator(plan, operators, S, c)
Resolve-Threats(plan)

end

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 32

POP: Selecting Sub-Goals

Function Select-Subgoal(plan)
// Returns S, c

pick a plan step S from STEPS(plan)
with a precondition C that has not been achieved

Return S, c

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 33

POP: Choosing operators

Procedure Choose-Operator(plan, operators, S, c)

Choose a step S’ from operators or STEPS(plan) that has c as an effect

If there is no such step then fail
Add the causal link S’ → c: S to LINKS(plan)
Add the ordering constraint S’  S to ORDERINGS(plan)

If S’ is a newly added step from operators then add S’ to STEPS(plan) and add
Start  S’  Finish to ORDERINGS(plan)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 34

POP: Resolving Threats

Procedure Resolve-Threats(plan)

for each S’ that threatens a link Si → c: Sj in LINKS(plan) do
choose either

Promotion: Add S’’  Si to ORDERINGS(plan)
Demotion: Add Sj  S’’ to ORDERINGS(plan)

if not Consistent(plan) then fail

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 35

Partially instantiated operators

• So far we have not mentioned anything about binding constraints
• Should an operator that has the effect, say, ¬At(x), be considered a threat to the condition,

At(Home) ?
 Indeed it is a possible threat because x may be bound to Home

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 36

Dealing with potential threats

 Resolve now with an equality constraint
 Bind x to something that resolves the threat (say x = TS)

 Resolve now with an inequality constraint
 Extend the language of variable binding to allow x ≠ Home

 Resolve later
 Ignore possible threats. If x = Home is added later into the plan, then we will attempt to

resolve the threat (by promotion or demotion)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 37

Proc Choose-Operator(plan, operators, S, c)

choose a step S’ from operators or STEPS(plan) that has c’ as an effect
such that u = UNIFY(c, c’, BINDINGS(plan))

if there is no such step then fail
add u to BINDINGS(plan)
add the causal link S’→ c: S to LINKS(plan)
add the ordering constraint S’  S to ORDERINGS(plan)
if S’ is a newly added step from operators then

add S’ to STEPS(plan) and add Start  S’  Finish to ORDERINGS(plan)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 38

Procedure Resolve-Threats(plan)

for each Si → c: Sj in LINKS(plan) do
for each S’’ in STEPS(plan) do

for each c’ in EFFECTS(S’’) do
if SUBST(BINDINGS(plan), c) = SUBST(BINDINGS(plan), ¬c’)
then choose either

Promotion: Add S’’  Si to ORDERINGS(plan)
Demotion: Add Sj  S’’ to ORDERINGS(plan)

if not Consistent(plan) then fail

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 39

GraphPlan and SATPlan
USING PLANNING GRAPHS

40INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Planning Graph

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 41

Op(ACTION: Eat(Cake),
PRECOND: Have(Cake),
EFFECT: Eaten(Cake) ∧ ¬Have(Cake))

Op(ACTION: Bake(Cake),
PRECOND: ¬Have(Cake),
EFFECT: Have(Cake))

Have(Cake)

¬ Eaten(Cake) ¬ Eaten(Cake)

Persistence action
(carries over a predicate to the next world)

Have(Cake)

Eat(Cake)
¬ Have(Cake)

Eaten(Cake)

S0 A0 S1

Mutex Links in a Planning Graph

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 42

Have(Cake)

¬ Eaten(Cake) ¬ Eaten(Cake)

Have(Cake)

Eat(Cake)
¬ Have(Cake)

Eaten(Cake)

S0 A0 S1

Mutual exclusion
among actions

Mutual exclusion
among derived
predicates

Planning Graphs

• Consists of a sequence of levels that correspond to time steps in the plan

• Each level contains a set of actions and a set of literals that could be true at that time
step depending on the actions taken in previous time steps

• For every +ve and –ve literal C, we add a persistence action with precondition C and
effect C

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 43

Planning Graph

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 44

Have(Cake)

¬ Eaten(Cake) ¬ Eaten(Cake)

Have(Cake)

Eat(Cake)

¬ Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat(Cake)

Bake(Cake)
Have(Cake)

¬ Eaten(Cake)

¬ Have(Cake)

Eaten(Cake)

A1 S2

Start: Have(Cake)
Finish: Have(Cake) ∧ Eaten(Cake)

Op(ACTION: Eat(Cake),
PRECOND: Have(Cake),
EFFECT: Eaten(Cake) ∧ ¬Have(Cake))

Op(ACTION: Bake(Cake),
PRECOND: ¬Have(Cake),
EFFECT: Have(Cake))

In the world S2 the goal
predicates exist without
mutexes, hence we need not
expand the graph any further

Mutex Actions
• Mutex relation exists between two actions if:
 Inconsistent effects – one action negates an effect of the other

Eat(Cake) causes ¬ Have(Cake) and Bake(Cake) causes Have(Cake)
 Interference – one of the effects of one action is the negation of a precondition of the other

Eat(Cake) causes ¬ Have(Cake) and the persistence of Have(Cake) needs Have(Cake)
 Competing needs – one of the preconditions of one action is mutually exclusive with a

precondition of the other
Bake(Cake) needs ¬ Have(Cake) and Eat(Cake) needs Have(Cake)

Have(Cake)

¬ Eaten(Cake) ¬ Eaten(Cake)

Have(Cake)

Eat(Cake)

¬ Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat(Cake)

Bake(Cake)
Have(Cake)

¬ Eaten(Cake)

¬ Have(Cake)

Eaten(Cake)

A1
S2

Mutex Literals

• Mutex relation exists between two literals if:
 One is the negation of the other, or
 Each possible pair of actions that could achieve the two literals is mutually exclusive

(inconsistent support)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 46

Have(Cake)

¬ Eaten(Cake) ¬ Eaten(Cake)

Have(Cake)

Eat(Cake)

¬ Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat(Cake)

Bake(Cake)
Have(Cake)

¬ Eaten(Cake)

¬ Have(Cake)

Eaten(Cake)

A1
S2

Function GraphPLAN(problem)
// returns solution or failure
graph  Initial-Planning-Graph(problem)
goals  Goals[problem]
do

if goals are all non-mutex in last level of graph then do
solution  Extract-Solution(graph)
if solution ≠ failure then return solution
else if No-Solution-Possible (graph)

then return failure
graph  Expand-Graph(graph, problem)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 47

Finding the plan

• Once a world is found having all goal predicates without mutexes, the plan can be
extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes

• Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

• The plan is shown in blue below

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 48

Have(Cake)

¬ Eaten(Cake) ¬ Eaten(Cake)

Have(Cake)

Eat(Cake)

¬ Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat(Cake)

Bake(Cake)
Have(Cake)

¬ Eaten(Cake)

¬ Have(Cake)

Eaten(Cake)

A1
S2

Termination of GraphPLAN when no plan exists
• Literals increase monotonically
• Actions increase monotonically
• Mutexes decrease monotonically
This guarantees the existence of a fixpoint

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 49

Have(Cake)

¬ Eaten(Cake) ¬ Eaten(Cake)

Have(Cake)

Eat(Cake)

¬ Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat(Cake)

Bake(Cake)
Have(Cake)

¬ Eaten(Cake)

¬ Have(Cake)

Eaten(Cake)

A1
S2

Exercise

Start: At(Flat, Axle) ∧ At(Spare, Trunk)
Goal: At(Spare, Axle)

Op(ACTION: Remove(Spare, Trunk),
PRECOND: At(Spare, Trunk),
EFFECT: At(Spare, Ground)

∧ ¬ At(Spare, Trunk))

Op(ACTION: Remove(Flat, Axle),
PRECOND: At(Flat, Axle),
EFFECT: At(Flat, Ground)

∧ ¬ At(Flat, Axle))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 50

Op(ACTION: PutOn(Spare, Axle),
PRECOND: At(Spare, Ground)

∧ ¬ At(Flat, Axle),
EFFECT: At(Spare, Axle)

∧ ¬ At(Spare, Ground))

Op(ACTION: LeaveOvernight,
PRECOND:
EFFECT: ¬ At(Spare, Ground)

∧ ¬ At(Spare, Axle)
∧ ¬ At(Spare, Trunk)
∧ ¬ At(Flat, Ground)
∧ ¬ At(Flat, Axle))

Planning with Propositional Logic

• The planning problem is translated into a CNF satisfiability problem
• The goal is asserted to hold at a time step T, and clauses are included for each time step up to T.
• If the clauses are satisfiable, then a plan is extracted by examining the actions that are true.
• Otherwise, we increment T and repeat

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 51

Example
Aeroplanes P1 and P2 are at SFO and JFK respectively. We want P1 at JFK and P2 at SFO

Initial: At(P1, SFO)0 ∧ At(P2, JFK)0

Goal: At(P1, JFK) ∧ At(P2, SFO)0

Action: At(P1, JFK)1 ⇔ [At(P1, JFK)0 ∧ ¬ (Fly(P1, JFK, SFO)0 ∧ At(P1, JFK)0)]
∨ [At(P1, SFO)0 ∧ Fly(P1, SFO, JFK)0]

Check the satisfiability of:
initial state ∧ successor state axioms ∧ goal

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 52

Additional Axioms

Precondition Axioms:
Fly(P1, JFK, SFO)0 ⇒ At(P1, JFK)0

Action Exclusion Axioms:
¬ (Fly(P2, JFK, SFO)0 ∧ Fly(P2, JFK, LAX)0)

State Constraints:
∀ p, x, y, t (x ≠ y) ⇒¬ (At(p, x)t ∧ At(p, y)t)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 53

SATPlan
Function SATPlan(problem, Tmax)

// returns solution or failure

for T = 0 to Tmax do
cnf, mapping Trans-to-SAT(problem, T)
assignment  SAT-Solver(cnf)
if assignment is not NULL then

return Extract-Solution(assignment, mapping)
return failure

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 54

Further Readings

• Heuristic Search Planning

• Planning with Temporal Goals

• Planning under Adversaries

• Multi-agent Planning

• Planning in Continuous State Spaces

• Planning with Reinforcement Learning

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 55

Explainable AI Planning (XAIP)

Enables you to seek explanations from the planner.

• Why did you do that?

• And why didn’t you do something else (which I
would have chosen)?

• Why is what you propose better / cheaper / safer
than what I would have done?

• Why can’t you do that?

• Why do I need to backtrack (and replan) at this
point?

• Why do I not need to replan at this point?

	Planning in Artificial Intelligence�The intelligent way to do things
	From State Spaces to Predicate Worlds
	Blocks World
	Choosing Actions
	Partial Solutions
	Partial Solutions
	Ordering Partial Solutions
	Ordering Partial Solutions
	Sometimes Partial Order may stay
	Sometimes Partial Order may stay
	Planning is an integral part of automation
	Partial Order Planning
	Terminology
	Early Days: STRIPS
	Representing States
	Representing Actions
	Representing Plans
	Example
	POP Example: Get Tea, Biscuits, Book
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	The Partial Order Planning Algorithm
	POP: Selecting Sub-Goals
	POP: Choosing operators
	POP: Resolving Threats
	Partially instantiated operators
	Dealing with potential threats
	Slide Number 38
	Slide Number 39
	GraphPlan and SATPlan
	Planning Graph
	Mutex Links in a Planning Graph
	Planning Graphs
	Planning Graph
	Mutex Actions
	Mutex Literals
	Slide Number 47
	Finding the plan
	Termination of GraphPLAN when no plan exists
	Exercise
	Planning with Propositional Logic
	Example
	Additional Axioms
	SATPlan
	Further Readings

